II-FCN for skin lesion analysis towards melanoma detection

نویسنده

  • Hongdiao Wen
چکیده

Dermoscopy image detection stays a tough task due to the weak distinguishable property of the object.Although the deep convolution neural network signifigantly boosted the performance on prevelance computer vision tasks in recent years,there remains a room to explore more robust and precise models to the problem of low contrast image segmentation.Towards the challenge of Lesion Segmentation in ISBI 2017,we built a symmetrical identity inception fully convolution network which is based on only 10 reversible inception blocks,every block composed of four convolution branches with combination of different layer depth and kernel size to extract sundry semantic features.Then we proposed an approximate loss function for jaccard index metrics to train our model.To overcome the drawbacks of traditional convolution,we adopted the dilation convolution and conditional random field method to rectify our segmentation.We also introduced multiple ways to prevent the problem of overfitting.The experimental results shows that our model achived jaccard index of 0.82 and kept learning from epoch to epoch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images

Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...

متن کامل

شناسایی سرطان پوست براساس الگوی حرارتی در تصاویر فروسرخ

Background and Aim: Skin cancer is the most common type of cancer constitutes and 75% of all cancers in the world. Malignant melanoma is the most invasive and lethal form of skin cancer. The objective of this study was to evaluate infrared thermography in differentiation of benign and malignant skin lesions. Methods: This study was conducted on 120 patients (60 female, 60 male) with a lesio...

متن کامل

Skin Lesion Analysis towards Melanoma Detection Using Deep Learning Network

Skin lesions are a severe disease globally. Early detection of melanoma in dermoscopy images significantly increases the survival rate. However, the accurate recognition of melanoma is extremely challenging due to the following reasons: low contrast between lesions and skin, visual similarity between melanoma and non-melanoma lesions, etc. Hence, reliable automatic detection of skin tumors is v...

متن کامل

Automatic skin lesion segmentation with fully convolutional-deconvolutional networks

This paper summarizes our method and validation results for the ISBI Challenge 2017 Skin Lesion Analysis Towards Melanoma Detection Part 1: Lesion Segmentation.

متن کامل

Melanoma detection with a deep learning model

Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions.    Methods: In this analytic s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1702.08699  شماره 

صفحات  -

تاریخ انتشار 2017